محاسبة طول عمر بالستیکی ماهواره توسط روش‌های عددی تحت تأثیر زاویة حمله و گشتاورهای ائرودینامیکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیات علمی / دانشکدة علوم و فنون نوین، دانشگاه تهران

2 کارشناس ارشد / دانشکدة علوم و فنون نوین، دانشگاه تهران

چکیده

در این مقاله روشی تحلیلی برای محاسبة ضرایب ائرودینامیکی برحسب زاویة حملة ماهواره در مدارهای نزدیک به سطح زمین معرفی شده است. از جمله نیروهای اغتشاشی که بر ماهواره‌های نزدیک به سطح زمین وارد می‌شود، نیروهای ائرودینامیکی است که مدلسازی آنها به‌دلیل وابستگی به اطلاعاتی جامع دربارة مواردی چون هندسة ماهواره، چگالی اتمسفر، دما، زمان مورد نظر، سرعت و ضرایب ائرودینامیکی بسیار دشوار است. در این مقاله طول عمر بالستیکی ماهواره در زوایای حملة متفاوت با استفاده از روش عددی کاوئل، تحت تأثیر گشتاورهای ائرودینامیکی به‌عنوان تابعی از زاویة حمله و محدودة پایداری ماهواره تحت تأثیر نیروهای اختلالی بررسی و محاسبه شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Calculating satellite ballistic lifetime with numerical method due to angle of attack and aerodynamics moments

نویسندگان [English]

  • Amir Reza Kosari 1
  • Marzieh Dolatabadi Farahani 2
  • Mehdi Fakoor 1
  • Mohammad Ali Amiri Atashgah 1
1
2
چکیده [English]

This paper describes an analytical solution for calculating the aerodynamic coefficients and forces that are depending on the satellites angle of attack in LEO orbit. Aerodynamics forces are one of the perturbing forces which are government forces in LEO orbit and they can reduce satellite life time. Unfortunately  these forces are function of geometric parameter, density of atmosphere, temperature, time, velocity and force coefficient so simulation of these kinds of forces are too hard and most of method which use for modeling have low Accuracy, because of this we could not predict satellite lifespan correctly.  In this paper we produce new approach for solving this issues which improve Accuracy by solving equations as a function of angle of attack. We calculate satellite ballistic lifetime with numerical method (Cowell method) and aerodynamics torque simulates as function of angle of attack. At the end our simulation validated with STK8 software which shows good similarity of our method with STK8 software.

کلیدواژه‌ها [English]

  • satellite
  • aerodynamic force
  • aerodynamic torque
  • angle of attack
  • ballistic lifetime
[1] Klinkrad, H., B. Fritsche. “Orbit and attitude perturbations due to aerodynamics and radiation pressure.” Oral presented at the ESA Workshop on Space Weather, ESTEC, Noordwijk, Netherlands, 1998.
[2] Koppenwallner, G. “Satellite aerodynamics and determination of thermospheric density and wind.” Oral presented at AIP Conference Proceedings, 2011.
[3] Reynerson, Charles. “Aerodynamic Disturbance Force and Torque Estimation for Spacecraft and Simple Shapes Using Finite Plate Elements–Part I: Drag Coefficient.” Advances in Spacecraft Technologies: 333.
[4] Walkera, A., Mehtaa, P., Kollera, J., & Walker, A. “A Comparison of Different Implementations of Diffuse Reflection with Incomplete Accommodation for Satellite Drag Coefficient Modeling.” Journal of Spacecraft and Rockets, 2013.
[5] Prieto, D. M., B. P. Graziano, P. C. Roberts. “Spacecraft drag modelling. Progress in Aerospace Sciences.” 2014, 64, pp. 56-65.
[6] Mehta, P. M., Walker, A., Lawrence, E., Linares, R., Higdon, D., & Koller, J. “Modeling satellite drag coefficients with response surfaces.” Advances in Space Research, 54(8), 2014, pp. 1590-1607.
[7] Ghodarzi. Ali. “Calculating satellite aerodynamic coefficient in rarefied atmosphere.” In 2th Conference of applied science of aerospace industries Tehran, Iran, 2003, (In Persian).
[8] Abdolahi. “Life of a LEO satellite orbits estimate of the aerodynamic forces”, MSC dissertation, Amirkabir University, Tehran, 2004, (In Persian).
[9] Walker, A., M. Piyush, K. Josef. “A Quasi-Specular Drag Coefficient Model using the Cercignani-Lampis-Lord Gas-Surface Interaction Model.” Journal of Spacecraft and Rockets, 2013.
[10] Schamberg. “A new analytic representation of surface interaction for hyperthermal free molecular flow.” Rand Corp., RM-2313, Santa Monica, CA, 1959.
[11] Schaaf, S. A., P. L. Chambré, Flow of rarefied gases, Princenton University Press, 1961.
[12] Storch, J. A. “Aerodynamic disturbances on spacecraft in free-molecular flow.” Aerospace Corp EL Segundo CA Vehicle Systems DIV, 2002.
[13] Roberts Jr., C. E. “An analytic model for upper atmosphere densities based upon Jacchia's 1970 models.” Celestial Mechanics, 4(3-4), 1971, pp. 368-377.
[14] Gaposchkin. “Calculation of satellite drag coefficients.” Massachusetts Institute of Technology Lexington Lincoln Lab, 1994.
[15] Villamil, R., G. Avanzini. “1912 Laws of Planes Moving at an Angle in Air and Water”, The Laws of Avanzini, 1994.
[16] Hurlbut. “Studies of molecular scattering at the solid surface.” Journal of Applied Physics, 28(8), 1957, pp. 844-850.
[17] Hurlbut. On the Molecular Interactions between Gases and Solids, University of California, Berkeley, CA, 1962.
[18] Hinchen, J. J., W. M. Foley. “Scattering of Molecular Beams by Metallic Surfaces”, United Aircraft Corp East Hartford Con Research Labs.
[19] Kleyn. “Molecular Beam scattering at metal surfaces.” Surface Dynamics, Elsevier, 2003, pp. 79-108.
[20] Walkera, A., P. Mehtaa, J. Kollera, A. Walker. “A Comparison of Different Implementations of Diffuse Reflection with Incomplete Accommodation for Satellite Drag Coefficient Modeling.” Journal of Spacecraft and Rockets, 2013.
[21] Cercignani, C., M. Lampis. “Kinetic models for gas-surface interactions.” Transport Theory and Statistical Physics, 1(2), 1971, pp. 101-114.
[22] Lord, R. G. “Application of the Cercignani-Lampis scattering kernel to direct simulation Monte Carlo calculations.” In Proc. of 17th Int. Symp. on Rarefied Gas Dynamics, 1991, pp. 1427-1433.
[23] Cook, G. E. “Satellite drags coefficients.” Planetary and Space Science, 13(10), 1965, pp. 929-946.
[24] Moe, K., M. M. Moe, S. D. Wallace. “Drag coefficients of spheres in free-molecular flow.” Advances in the Astronautical Sciences, 93, 1996, pp. 391-406.
[25] Doornbos, E., J. V. Den Ijssel, H. Lühr, M. Förster, G. Koppenwallner. “Neutral density and crosswind determination from arbitrarily oriented multiaxis accelerometers on satellites.” Journal of Spacecraft and Rockets, 47(4), 2010, pp. 580-589.
[26] Marcos.”New satellite drag modeling capabilities.” In 44th AIAA Aerospace Sciences Meeting and Exhibit, 2006, pp. 9-12.
[27] Pardini, C., K. Moe, L. Anselmo. “Thermospheric density model biases at the 23rd sunspot maximum.” Planetary and Space Science, 67(1), 2012, pp. 130-146.
[28] Schaaf, S. A., L. Talbot. Handbook of Supersonic Aerodynamics, Section l6, Mechanics of Rarefied Gases, Superintendent of Documents, US Government Printing Office, 1959.
[29] Picone, J. M., A. E. Hedin, D. P. Drob, A. C. Aikin. “NRLMSISE‐00 empirical model of the atmosphere: Statistical comparisons and scientific issues.” Journal of Geophysical Research: Space Physics (1978–2012), 107(A12), SIA-15.
[30] Bowman, B. R., W. Kent Tobiska, F. A. Marcos, C. Valladares. “The JB2006 empirical thermospheric density model.” Journal of Atmospheric and Solar-Terrestrial Physics, 70(5), 2008, pp. 774-793.
[31] Montenbruck, O., E. Gill, E. Satellite orbits, Springer, 2000.
[32] Roberts Jr., C. E. “An analytic model for upper atmosphere densities based upon Jacchia's 1970 models.” Celestial Mechanics, 4(3-4), 1971, pp. 368-377.
[33] Lyle, R., P. Stabekis. “Spacecraft Aerodynamic Torques.” NASA SP-8058, January 1971.
[34] White, C., C. Colombo, T. J. Scanlon, C. R. McInnes, J. M. Reese. “Rarefied gas effects on the aerodynamics of high area-to-mass ratio spacecraft in orbit.” Advances in Space Research, 51(11), 2013, pp. 2112-2124.
[35] Rawashdeh, S., D. Jones, D. Erb, A. Karam, J. E. Lumpp Jr. “Aerodynamic attitude stabilization for a Ram-Facing CubeSat.” In Breckenridge, Colorado: AAS 32nd Annual Guidance and Control Conference, 2009.
[36] Rawashdeh. “CubeSat Aerodynamic Stability.” ISS Altitude and Inclination, 2012.
[37] Sidi, Spacecraft dynamics and control: a practical engineering approach (Vol. 7), Cambridge university press, 1997.
[38] Tewari, Atmospheric and Space Flight Dynamics: Modeling and Simulation with MATLAB® and Simulink®, Springer, 2007.
[39] Wertz, J. R., W. J. Larson, Space mission analysis and design, 1999.
[40] Kennewell, “Satellite Orbital Decay Calculations”, IPS Radio & Space Services, the Australian Space Weather Agency, Sydney, Australia, 1999.