تعیین پارامترهای شکست یک استوانه جدار نازک تحت فشار در حضور تنش‏های پسماند جوشکاری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیات علمی / دانشکدة مهندسی صنایع، دانشگاه علم و صنعت ایران

2 کارشناس ارشد / دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران

چکیده

در این مقاله ابتدا فرایند جوشکاری قوس تنگستن یک پوستة آلومینیومی با درز جوش طولی به‏صورت سه‏بعدی در نرم‏افزار آباکوس مدلسازی شده و توزیع تنش پسماند ناشی از فرایند جوشکاری به‏دست می‏آید. تمامی خواص مکانیکی و حرارتی پوسته وابسته به دما در نظر گرفته شده و برای مدلسازی شار حرارتی و فلز جوش از مدل دو بیضی‏گون گلداک و روش تولد و مرگ المان استفاده می‏شود. مقدار تنش پسماند در اطراف خط جوش و در ناحیه متأثر از حرارت به مقدار قابل ملاحظه‏ای کششی می‏باشد که می‏تواند سبب بروز و رشد ترک در ناحیة خط جوش شود. سپس یک ترک سه‏بعدی نیم‏بیضوی با طول‏های مختلف در امتداد خط جوش و در جدارة پوستة آلومینیومی به‏صورت طولی در نظر گرفته می‏شود و پس از محاسبة ضریب شدت تنش مود I آن تحت بارگذاری فشار داخلی منحنی‏های تغییرات ضریب شدت تنش در سرتاسر جبهة ترک و برای طول ترک‏های مختلف ارائه می‏شود. در نهایت با در نظر گرفتن تأثیر حوزة تنش پسماند اطراف جوش در ضریب شدت تنش و تکرار تحلیل‏های اجزاطی محدود نشان داده می‏شود که تأثیر همزمان فشار داخلی و تنش پسماند کششی موجود در اطراف جوش می‏تواند شرایط رشد ترک در پوسته را تسهیل نمایند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Fracture parameter determination for a thin walled pressurized cylinder under the influence of residual stress induced by welding process

نویسندگان [English]

  • Mohammad Reza Mohammad Aliha 1
  • Hussain Gharehbaghi 2
چکیده [English]

In the first part of this paper, the gas tungsten-arc welding process of a thin cylinder made of Al6061-T6 alloy is simulated using 3-D finite element model in the ABAQUS code and the distribution of residual stress is obtained. Temperature dependent thermo-mechanical properties are considered for the aluminum alloy and for simulating the heat source of tungsten arc welding, Goldak's double ellipsoid model is also employed. Based on the finite element results, the value of residual stress is considerably positive around the weld line and HAZ area which can increase the risk of crack initiation and propagation in the weldment zone. Hence, in the second part of the numerical analyses of this research a longitudinal semi elliptical crack is considered in the wall of internally pressurized aluminum cylinder and its mode I stress intensity factor (KI) is determined numerically for different crack geometries. Finally the influence of both residual stress field and internal pressure is taken into account on the value of KI. It is observed that the effects of combined internal pressure and tensile residual stresses around the crack can facilitate required conditions for crack propagation in the analyzed cracked thin cylinder.

کلیدواژه‌ها [English]

  • Finite element modeling
  • welding simulation
  • Residual Stress
  • cracked thin cylinder
  • semi elliptical crack
[1] Li, Jun, Jian G. Yang, Hai L. Li, De J. Yan, Hong Y. Fang. “Numerical simulation on bucking distortion of aluminum alloy thin-plate Weldment.” Frontiers of Materials Science in China 3 (1), 2009, pp. 84-88.
[2] Cañas, J., R. Picón, F. Pariís, A. Balzquez, J. Marín. “A simplified numerical analysis of residual stresses in aluminum welded plates.” Computers & Structures 58 (1), 1996, pp. 59–69.
[3] Frigaard, O., O. Grong, T. Midling. “A process model for friction stir welding of age hardening aluminum alloys.” Metallurgical and Materials Transactions A 32 (5), 2001, pp. 1189-1200.
[4] Ulysee, P. “Three-dimensional modeling of the friction stir-welding process.” International Journal of Machine Tools and Manufacture 42 (14), 2002, pp. 1549-1557.
[5] Khandkar, M.Z.H., J.A. Khan, A.P. Reynolds. “Predictions of temperature distribution and thermal history during friction stir welding: input torque based model.” Science and Technology of Welding and Joining 8 (3), 2003, pp. 165-174.
[6] Chen, C.M., R. Kovacevic. “Finite element modeling of friction stir welding-thermal and thermo mechanical analysis.” International Journal of Machine Tools & Manufacture 43 (13), 2003, pp. 1319-1326.
[7] Zaeem, Mohsen A., M.R. Nami, M.H. Kadivar. “Prediction of welding buckling distortion in a thin wall aluminum T joint.” Computational Materials Science 38 (4), 2007, pp. 588-594.
[8] SattariFar, Iraj, M.R. Farahani. “Effect of the weld groove shape and pass number on residual stresses in butt-welded pipes.”International Journal of Pressure Vessels and Piping 86 (11), 2009, pp. 723–731.
[9] Roelens, J.B. “Numerical simulation of some multipass submerged arc welding determination of the residual stresses and comparison with experimental measurements.” Welding in The word 35 (2), 1995, pp. 17-24.
[10] مصیب‏نژاد، جواد، مهسا سیدیان چوبی، محمد حق پناهی، محمد صدیقی. "شبیه‏سازی المان محدود و تجربی میدان‏های دما و تنش‏های پسماند در یک اتصال لوله به فلنج." نشریه مکانیک و هوافضا 4 (3)، 1387، ص. 71-83.
[11] Runnemalm, Henrik, R. Lin. “Investigation of Residual Stresses in a Laser Welded Pipe by Finite Element Simulations and Neutron Diffraction Measurements”, the 5th International Conference on Residual Stresses, Linköping, Sweden, 1997.
[12] Mochizuki, Masahito, Makoto Hayashi, Toshio Hattori. “Numerical Analysis of Welding Residual Stress and its Verification Using Neutron Diffraction Measurement.” ASME Journal of Engineering Materials and Technology 122 (1), 2000, pp. 98-103.
[13] Underwood, J.H. “Stress intensity factor for internally pressurized thick walled cylinders.” ASTM National Symposium on Fracture Mechanics 5 (3), 1971, pp. 59-72.
[14] Kobayashi, A.S. “A simple procedure for estimating stress intensity factor in regions high stress gradients.” WASHINGTON: Significance of defects in welded structures, Defense Technical Information Center, 1973.
[15] Atluri, S.N., K. Kathirsan. “Outer and Inner Surface Flaws in Thick-Walled Pressure Vessels.” Transaction of the Fourth International Conference on Structure Matreial in Reactor Technology, San Francisco, California, 1977.
[16] McGowan, J.J., M. Raymund. “Stress intensity factor for internal longitudinal semi-elliptical surface flaws in a cylinder under arbitrary loading.” ASTM STP 677, 1979, pp. 365-380.
[17] Newman, J.C., I.S. Raju. “Stress intensity factor for internal surface cracks in Cylindrical pressure vessels.” Journal of Pressure Vessel Technology 102, 1980, pp. 342-346.
[18] Raju, I.S., J. C. Newman. “Stress intensity factor for internal and external surface cracks in Cylindrical vessels.” Journal of Pressure Vessel Technology 104, 1982, pp. 293-298.
[19] Kirkhope, K.J., R. Bell, J. Kikhope. “Stress intensity factors equations for single and multipe cracked pressurized thick walled cylinders.” International Journal of Pressure Vessel and Piping 41, 1990, pp. 103-111.
[20] Kirkhope, K.J., R. Bell, J. Kikhope. “Stress intensity factors equations for single and multipe semi elliptical surface cracks in pressurized thick walled cylinders.” International Journal of Pressure Vessel and Piping, 47, 1991, pp. 247-257.
[21] Zheng, X.J., G. Glinka. Weight function and stress intensity factors for longitudinal semi-elliptical cracks in thick walled cylinders.” Journal of Pressure Vessel Technology 117, 1995, pp. 383-389.
[22] Zheng, X.J, A. Kiciak, G. Glinka. “Weight function and stress intensity factors for internal surface semi elliptical crack in thick walled cylinders.” Enginieering Fracture mechanics 58, 1997, pp. 207-221.
[23] کریمی، رضا، و مجید میرزائی. "بررسی رشد ترک در لوله جدار نازک تحت بارگذاری انفجاری گازی به روش اجزای محدود." مجلة فنی و مهندسی مدرس، مکانیک 37، 1388، ص. 51-71.
[24] Long, H., D. Gery, A. Carlier, P.G. Maropoulos. “Prediction of welding distortion in butt joint of thin plates.” Materials & Design 30 (10), 2009, pp. 4126-4135.
[25] Zhu, X.K., Y.J. Chao. “Effects of temperature dependent material properties on welding simulation.” Computers and Structures 80, 2002, pp. 967-976.
[26] Chao, Y., and X. Qi. “Thermal and Thermo-Mechanical Modeling of Friction Stir Welding of Aluminum Alloy 6061-T6.” Journal of Materials Processing & Manufacturing Science 7, 1998, pp. 215-233.
[27] API RP-579. Recommended practices for fitness-for-service, 2000.
[28] PD 6493. Guidance on Methods for Assessing the Acceptability of flaws in Fusion welded structures. British standards institute, 1991.
[29] MacMaster, F.J., K.S. Chan, S.C. Bergsma, and M.E. Kassner. “Aluminum alloy 6069 part II: fracture toughness of 6061-T6 and 6069-T6.” Materials Science and Engineering A 289, 2000, pp. 54–59.
[30] 6061-T6 Aluminum. Material Notes. A Resource for Semiconductor Manufacturers, www.glemco.com, 2013.