شبیه‌سازی ائرودینامیک و نویز جریان گاز فراصوت تراکم‌ پذیر حین خروج از لوله

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجو دکتری / مهندسی فرایند، دانشگاه علم و صنعت ایران

2 دانشجو دکتری / مدیریت تکنولوژی، سازمان صنایع دفاع

3 کارشناسی ارشد / مهندسی مکانیک، تبدیل انرژی، سازمان صنایع دفاع

4 عضو هیات علمی / دانشکدة مهندسی مکانیک، دانشگاه کاشان

چکیده

در این مقاله جریان گاز فراصوت تراکم‌پذیر حین خروج از لوله­ای به قطر 7/62 میلی‌متر در هندسة تقارن محوری شبیه‌سازی شده است. برای این منظور از روش دانسیتة پایه و شبکة تطبیقی دینامیک با معیار فشار استاتیک در شبیه‌سازی­ها استفاده شده است. مسئله در دو حالت گاز غیر ویسکوز و مدل توربولنسی k-ɛ حل شد. مقایسة نتایج سایه‌نگاری تجربی شیلرین با کانتورهای دانسیته و مقایسة نتایج فشار استاتیک روی امواج شوک با داده­های موجود در مقالات، همخوانی بسیار خوبی نشان می‌دهند. همچنین زمان وقوع شوک اول و دوم و امواج انفجاری و نحوة پیشروی آنها در دامنة شبیه‌سازی‌شده بررسی شد. پس از اعتبارسنجی مسئله، نتایج شبیه­سازی در استخراج داده­های سطح فشار صوتی با استفاده از معادلات فاکس ویلیامز و هاوکینگز استفاده شد. برای این منظور دریافت‌کننده‌های نویز در پنج فواصل 1، 2، 6، 10 و 15 متری قرار گرفت و مقدار سطح فشار صوتی در این فواصل به‌دست آمد و در سه زمان مختلف با هم مقایسه شد. نتایج سطح فشار صوتی حاصل با نتایج تجربی مراجع موجود تطابق خوبی نشان داد. بیشترین سطح فشار صوتی در زمان وقوع امواج شوک انفجاری برابر با 119 دسی­بل به‌دست آمد. نتایج شبیه‌سازی نشان داد تأثیر تغییر مدل از غیر ویسکوز به مدل توربولنسی ɛ k- در مقادیر سطح فشار صوتی ناچیز است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Aerodynamic and noise simulation of compressible supersonic gas flow exiting from tube

نویسندگان [English]

  • Sepideh Roshdi 1
  • Rahman Mahdiani 2
  • Alireza Mostafavi 3
  • Mortezai Razaghi 3
  • Hossein Ashrafi 4
1
2
3 defense industries organization
4
چکیده [English]

Simulation of supersonic compressible gas flow has been investigated while exiting from 7.62 mm diameter tube in the axis-symmetric geometry. Density-based solver and adaptive dynamic mesh methods were applied based on static pressure gradient. Simulations have been carried out using inviscid and k-ɛ turbulence models. Time of first, second, and main flow shock waves and their progress were also investigated. Existing experimental Schlieren shadowgraphs were compared with density contours of simulations and static pressure results within the shock waves were also compared with the results of literature and good agreements have been achieved. After verification, simulation results have been applied in order to extract sound pressure level values using Ffowcs-Williams and Hawkins (FWH) model. Sound pressure receivers have been located in1, 2,6,10 and 15 m far from the sound source and sound pressure levels have been obtained and compared at the three different times. Results were in good agreement with test data of existing literature. Maximum sound pressure level was obtained in the time of 0.58 millisecond equaling 119 dB. Simulations results showed that changing viscous model from inviscid to k-ɛ turbulence model had an insignificant effect on the noise values.
 

کلیدواژه‌ها [English]

  • ideal gas
  • acoustics
  • sound pressure level
  • first shock
  • second shock
[1] A. Zibarov, Numerical simulation of intermediate ballistics for gun and rocket systems, in:  Proc. of 19th International Symposium of Ballistics, Interlaken, Switzerland, 2001, pp. 1-8.
[2] Y. Dayan, D. Touati, Simulation of unsteady muzzle flow of a small-caliber gun, WIT Transactions on Engineering Sciences,Vol. 52, 2006.
[3] D. L. Cler, N. Chevaugeon, M. S. Shephard, J. Remacle, CFD application to gun muzzle blast a validation case study,  41st AIAA Aerospace Science Meeting and Exhibit, Reno, NV, 2003.
[4] D. L. Cler, N. Chevaugeon, M. S. Shephard, J. E. Flaherty, J.F. Remacle, Computational fluid dynamics application to gun muzzle blast-a validation case study, DTIC Document, 2003.
[5] Z. Guo, Y. Pan, H. Zhang, B. Guo, Numerical simulation of muzzle blast overpressure in antiaircraft gun muzzle brake, Journal of Information& Computational Science, Vol.10, pp. 3013-3019, 2013.
[6] H. Rehman, S. H. Hwang, B. Fajar, H. Chung, H. Jeong, Analysis and attenuation of impulsive sound pressure in large caliber weapon during muzzle blast, Journal of Mechanical Science and Technology,Vol. 25, No.10, pp. 2601-2606, 2011.
[7] H. Rehman, H. Chung, T. Joung, A. Suwono, H. Jeong, CFD analysis of sound pressure in tank gun muzzle silencer, Journal of Central South University of Technology, Vol. 18, No. 6, 2015-2020, 2011.
[8] J. Bin, M. Kim, S. Lee, A numerical study on the generation of impulsive noise by complex flows discharging from a muzzle, International journal for numerical methods in engineering, Vol. 75, No. 8, pp. 964-991, 2008.
[9] J. Bin, M. Y. Hussaini, Simulation and analysis of noise associated with muzzle flow, International Journal of Aeroacoustics, Vol. 12, pp. 21-51, 2013.
[10] W. Yu, X. Zhang, Aerodynamic Analysis of Projectile in Gun System Firing Process, Journal of Applied Mechanics, Vol. 77, No. 5, 051406, 2010.
[11] X. H. Jiang, B. C. Fan, H. Z. Li, Numerical investigations on dynamic process of muzzle flow, Applied Mathematics and Mechanics, Vol. 29, No. 3, pp. 351-360, 2008.
[12] W. Yu, X. Zhang, Numerical Simulation and Analysis of the Muzzle Flow During the Revolving Barrel Gun Firing, Journal of Applied Mechanics,Vol. 80, No. 3, 031602, 2013.
[13] H. Zhang, Z. Chen, X. Jiang, H. Li, Investigations on the exterior flow field and the efficiency of the muzzle brake, Journal of Mechanical Science and Technology, Vol. 27, pp. 95-101, 2013.
[14] N. Chevaugeon, J. Xin, P. Hu, X. Li, D. Cler, J. E. Flaherty, M. S. Shephard, Discontinuous Galerkin methods applied to shock and blast problems, Journal of Scientific Computing, Vol. 22, pp. 227-243, 2005.
[15] S. W. Lo, C. H. Tai, J. T. Teng, Axial-Symmetry Numerical Approaches for Noise Predicting and Attenuating of Rifle Shooting with Suppressors, Journal of Applied Mathematics, 2011.
[16] Ansys Fluent 12.0 Theory Guide, Eneagrid: project website, 2016.
[17] M. J. Lighthill, On sound generated aerodynamically. I. General theory,  Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, Vol. 211, No. 1107, pp. 564-587, 1952,
[18] J. F. Williams, D. L. Hawkings, Sound generation by turbulence and surfaces in arbitrary motion, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 264, Vol. 1151, pp. 321-342, 1969.
[19] M. R. Bagheri, H. Mehdigholi, M. S. Seif, An analysis of hydrodynamics and noise behavior for submerged propeller in various conditions by experimental and numerical  methods, Vol. 14, No. 5, pp. 15-25, 2014 (in Persian).
[20] M. Yadegari, M. H. Abdollahijahdi, Investigation of Effecting Parameters on Quality of the Shock Wave Capturing in a Bump, American Journal of Fluid Dynamics, Vol. 5, pp. 43-54, 2015.
[21] Military specificationcartridge, 7.62 mm, M973 ball; Short range training ammunition performance specification; mil-c-71167 (ar) 1-65, 1993.